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ABSTRACT
The geometric quality of a wafer is an important quality characteristic in the semiconductor industry. How-
ever, it is difficult to monitor this characteristic during the manufacturing process due to the challenges
created by the complexity of the data structure. In this article, we propose an Additive Gaussian Process
(AGP) model to approximate a standard geometric profile of a wafer while quantifying the deviations from
the standard when a manufacturing process is in an in-control state. Based on the AGP model, two sta-
tistical tests are developed to determine whether or not a newly produced wafer is conforming. We have
conducted extensive numerical simulations and real case studies, the results of which indicate that our pro-
posed method is effective and has potentially wide application.

1. Introduction

A wafer’s geometric quality, which can be manifested by the
thickness, roughness, or flatness profile of the entire surface
layer, is an important quality feature in the semiconductor
industry. More specifically, in the manufacture of electronic
chips, a silicon ingot is usually sliced into sections using wire
saws. After several flattening steps, including lapping, polish-
ing, and cleaning, the wafers are sent to front-end and back-end
processes to form the final chips (O’Mara et al., 1990). An unde-
sired geometric quality often results in a large number of defec-
tive dies on the wafer during front-end processes (Doering and
Nishi, 2007), causing production delays or economic loss. Due
to the importance of geometric quality, people in the semicon-
ductor industry are looking for effectivemethods tomonitor and
control quality.

Statistical testing methods enable us to quantitatively mon-
itor quality characteristics. Prior to conducting statistical tests,
several preparation procedures, such as data sampling and data
modeling, may be applied to help construct the tests. In indus-
trial practice, engineers have developed relatively systematic
approaches to determine the geometric conformity of sliced
wafers. As shown in Fig. 1, either the contact (using mechanical
probe) or non-contact (using capacitance probe or wavelength
scanning interferometer) method is able to produce numerous
measurements on a single wafer that contain rich information
about the geometric quality.

Then several indicators are derived from these measure-
ments to measure the geometric quality based on the Inter-
national Technology Roadmap for Semiconductors. These
indicators include total thickness variation, non-linear thickness
variation, bow, warp, and sori (Schmitz et al., 2003). Despite
their importance in safeguarding the geometric quality, these
summary indicators cannot provide a comprehensive view of

CONTACT Nan Chen isecn@nus.edu.sg
Supplemental data for this article can be accessed on the publisher’s website at http://www.tandfonline.com/uiie.

the geometric quality for several reasons. First, the aggregated
indicators are usually summary statistics, which lose the major-
ity of the rich information the metrology equipment may pro-
vide. Second, although the aggregated indicators are effective in
screening out nonconforming units, the efficiency of the indica-
tors for identifying process changes is usually unsatisfactory. Jin
et al. (2012) reported that the contact method may take more
than 8 hours to measure a typical batch (400 in one produc-
tion run) of wafers. The non-contact method could take an even
longer time. Third, and more important, when quality dete-
rioration is noticed from the aggregated indicators, they can-
not provide detailed insight about the failure patterns or root
causes due to their loss of measurement information. Therefore,
a more systematic and efficient method to utilize these data to
model and monitor the geometric quality of a wafer is desired.
However, there are several difficulties that make this task a
challenge.

First, as demonstrated in Fig. 1, the thickness profile is rather
complex. No simple patterns or trends can be visually identi-
fied, and it is difficult to accuratelymodel using some parametric
functions. As a result, traditional profile monitoring techniques
(Zou, Tsung, and Wang, 2007; Zou, Zhou, Wang, and Tsung,
2007; Jensen et al., 2008) that approximate the profile by a para-
metric function and then monitor the parameter vector are dif-
ficult to apply in this case. Second, the measurement locations
on different wafers may not be perfectly aligned due to differ-
ent crystal orientations of the ingots and wafer rotation during
the measurement. Therefore, conventional multivariate moni-
toring schemes such as a T2 chart are not suitable as the vari-
ables being monitored are essentially varying from one wafer
to another. Third, the measurements are spatially correlated
due to the similar conditions experienced by physically adjacent
points. As a result, methods with the assumptions that errors are
independently and identically distributed (i.i.d.) are no longer
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Figure . Example of a wafer thickness profile and possiblemeasurement locations.

applicable. Last, but by no means least, not only do changes in
the mean or variance of the deviations the reflect potential pro-
cess shifts, but the changes in its spatial correlation are also a
symptomof unexpected process shifts and should bemonitored.
Therefore, we need a comprehensive monitoring scheme that is
effective in detecting all types of changes that may occur in the
complex geometric data.

Due to these challenges, only a limited number of papers
have been published. In particular, Jin et al. (2012) suggested
using a Gaussian process to model the thickness profile of the
entire wafer. To speed up the process, they proposed a sequen-
tial measurement strategy that adaptively determines the next
measurement locations. Using their method, only a small set
of measurements needs to be taken, and then a Gaussian pro-
cess model is built to accurately characterize the entire geo-
metric profile. As a result, the measurement time can be sig-
nificantly reduced. Despite its importance, their method was
developed for measuring a single wafer. Therefore, it is not suit-
able for quality monitoring, as each geometric profile is mod-
eled as an independent Gaussian process, and there are no sta-
tistical rules to determine whether or not the fitted Gaussian
process is in control. Zhao et al. (2011) proposed a partial dif-
ferential equation–constrained Gaussian process model to pre-
dict the wafer thickness profile. The model integrates physical
knowledge of the slicing process and the observed data to bet-
ter characterize the geometric quality. However, their method
also focuses on modeling a single wafer and lacks a quantifi-
cation of the variations when the manufacturing process is in
control.

Although the aforementioned works did not solve the prob-
lem, they have demonstrated that the Gaussian process is a
suitable model for spatially correlated data (Cressie, 1993), and
it can also characterize complex geometric profiles. In addi-
tion, compared with other non-parametric methods such as
B-splines (e.g., De Boor (2001)) or kernel smoothing (e.g.,
Hastie and Loader (1993)), the Gaussian process is much easier
to extend to higher input dimensions when the manufacturing
process involves other controllable or uncontrollable variables.
One thing to be noted is that a single Gaussian process model
may not help to detect point-wise deviation between two profiles

Figure . Two curves with the same spatial pattern and point-wise difference.

since they can be independent realizations generated from a sin-
gle Gaussian process. However, in the early stage of wafer man-
ufacturing, the point-wise deviation is not crucial. Instead, it is
the spatial pattern of the surface that influences the downstream
manufacturing. For example, Fig. 2 shows two curves (solid line
and dashed line representing two profiles) that are point-wise
different. However, in terms of their impact on the downstream
quality, they are indistinguishable because their spatial patterns
are the same. On the other hand, we also want to make sure
that the surface does not significantly deviate from the desired
profile. Therefore, considering the advantages of the Gaussian
process and targeting the limitations in existing works, we pro-
pose an Additive Gaussian Process (AGP) model to character-
ize the geometric profile of a wafer using data measured on a
group of wafers. The AGP model is composed of two indepen-
dent Gaussian processes with different covariance structures.
The first Gaussian process is used to approximate the unknown
desired (or standard) geometric profile, whereas the second one
is used to quantify the “distribution” of spatially correlated devi-
ations from the standard profile when the manufacturing pro-
cess is in control. By using this approach to construct the model,
we are able to detect point-wise changes in the standard pro-
file and spatial pattern changes in the deviations. We would like
to highlight that we are not the only ones proposing this “addi-
tive” concept. Ba and Joseph (2012) proposed a similar structure
called the Composite Gaussian Process (CGP) model. However,
the CGP model is mainly focused on modeling non-stationary
output data from computer simulations, which is different
from our AGP model. A detailed discussion on the differences
between the CGP and AGP models will be provided in the next
section.

Since our AGPmodel considers a group of geometric profiles
collaboratively, it allows distinct measurement locations on dif-
ferent wafers. In addition, only a small set ofmeasurements need
to be taken from each wafer. Therefore, compared with tradi-
tional methods, the required measurement time is significantly
shortened. Based on the AGP model, we also develop two sta-
tistical monitoring methods, the T2 chart and the Generalized
Likelihood Ratio (GLR) chart, to rigorously analyze whether a
tested wafer conforms to the standard within an acceptable vari-
ation. The proposed monitoring schemes are able to detect dif-
ferent patterns in changes on the geometric profile including
mean shifts, variance shifts, and correlation shifts.

The remainder of this article is organized as follows:
Section 2 formulates the problem and introduces the AGP
model used to model the standard geometric profile of a wafer
and its deviation; Section 3 describes the statistical monitoring
schemes we propos to monitor the geometric conformity of a
wafer; Section 4 uses extensive simulation studies to investigate
the performance of the proposed method; Section 5 presents an
application in wafer manufacturing, which monitors the thick-
ness of sliced wafers; Section 6 concludes the article and dis-
cusses future directions.
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Figure . Demonstration of notation.

2. Statistical quantification using AGP

2.1. Problem formulation and notation

We assume a group of N0 wafers have been produced
when the manufacturing process was in control. On the ith
wafer, we take measurements at ni different locations Xi ≡
[xi1, xi2, · · · , xini]T with corresponding measurement values
Yi ≡ [yi1, yi2, · · · , yini]T , where x denotes the two-dimensional
coordinate on the wafer.

We use the function f (x) : R
2 �→ R to denote the standard

or desired quality value (e.g., thickness, roughness, or flatness)
we expect at location x. Due to different sources of variation in
the process, each produced wafer can be modeled as the sum-
mation of a standard profile f (x) and a random error; that is,

yi j = f (xi j) + εi(xi j), ∀i = 1, 2, · · · ,N0;
j = 1, 2, · · · , ni, (1)

where εi(xi j) is the deviation of the qualitymeasurement at loca-
tion xi j onwafer i from the standard value f (xi j), including both
process variations andmeasurement errors. Different from con-
ventional models, in Equation (1) εi(xi j) and εi(xik), k �= j are
typically correlated because points on the same wafer undergo
similar processing conditions, which induces inherent spatial
correlations of the deviations between locations xi j and xik. In
contrast, εi(xi j) and εi′ (xi′k), i �= i′ can be considered as inde-
pendent from each other because different wafers are produced
independently. Figure 3 uses a one-dimensional example to
demonstrate our notation.

When a new wafer is produced, we take measure-
ments at locations Xl ≡ [xl1, xl2, · · · , xlnl ]T with values
Yl ≡ [yl1, yl2, · · · , ylnl ]T . Using the quality measurements
(Xl,Yl ), we want to develop a systematic monitoring scheme
to detect whether or not the manufacturing process is in con-
trol. If abnormal deviations from the standard are discovered,
appropriate diagnostic and corrective actions need to be taken
to improve the process quality.

2.2. Gaussian process regression

Gaussian process regression is a popular model in spatial statis-
tics (Cressie, 1993), and it also plays an important role in meta-
modeling to approximate complex functions (see, e.g., Sacks
et al. (1989) and Ankenman et al. (2010)). A typical Gaussian

Figure . Two independent realizations of the same Gaussian process.

process regression model can be expressed as

y(x) = λ(x) + Z(x), (2)

where λ(x) is a deterministic function, and Z(x) is realization
of a Gaussian process with zero mean. The Gaussian process
can be viewed as a distribution over a set of continuous func-
tions, and any finite samples from the Gaussian process follow a
multivariate normal distribution. As a result, [y(x1), y(x2), ���,
y(xn)]T are normally distributed with mean vector [λ(x1), λ(x2),
���, λ(xn)]T and covariance matrix C = [k(xi, x j)]n×n, where
k(xi, xj) is a positive-definite kernel function. Commonly used
kernel functions include the squared exponential function,
Matérn functions, etc. (Rasmussen and Williams, 2006).

The Gaussian process is attracting increasing interest due
to its high levels of flexibility and conceptual simplicity. More
important, it can provide a unique statistical view on the pre-
diction errors. This feature also makes it useful in simulation
optimization (Jones et al., 1998; Huang et al., 2006) and sequen-
tial samplings and experimental design (Jin et al., 2012). We
also want to highlight that Equation (2) is essentially a non-
parametricmodel. In other words, only knowing the parameters
of λ(x) andZ(x) is insufficient to completely determine y(x). The
observed data (whether noisy or not) are also required to pro-
vide meaningful predictions.

To demonstrate this, Fig. 4 illustrates two independent real-
izations of the same Gaussian process with radically different
characteristics. As a result, simply monitoring the parameters of
the Gaussian process models that are fitted for each individual
wafer is insufficient to effectively detect changes in the geometric
profiles.

2.3. AGPmodel

In Section 2.1, we use f (x) to represent the standard geomet-
ric profile as the desired or designed output from the process.
However, the exact function is often unknown and needs to
be estimated from historical data. Considering the flexibility
requirement on approximation and the characteristics of spatial
correlation, in this article we propose an AGPmodel to quantify
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the geometric variations when the process is in control. More
specifically, we assume f (x) is a realization of the Gaussian pro-
cess with mean μ and covariance function

s(xi j, xik|θ1)
= σ 2 exp

[−(xi j − xik)T × diag(θ1) × (xi j − xik)
]
, (3)

where θ1 is the two-dimensional correlation parameter, and
diag(θ1) is the diagonal matrix with diagonal vector θ1. For
demonstration purposes, in this article we use the squared expo-
nential covariance function. Other covariance functions sug-
gested in Rasmussen and Williams (2006) can also be easily
applied in the AGPmodel. In addition, to model the spatial cor-
relation in εi(x), we assume εi(x) i = 1, 2, · · · ,N0, are inde-
pendent realizations of another Gaussian process with mean
zero and covariance function

v(xi j, xik|θ2)
= τ 2 exp

[−(xi j − xik)T × diag(θ2) × (xi j − xik)
]
. (4)

As a result, the observed quality measurements are simply the
sumof the realizations of twoGaussian processes, whichwe refer
to as the AGP.

Using the measurement data from in-control wafers, we can
approximate the standard profile f (x) and quantify the amount
of variation εi(x), this provides us with a baseline to monitor
newly manufactured wafers. Combining all of the in-control
measurements, we denoteXIC ≡ [X1,X2, · · · ,XN0 ]T andYIC ≡
[Y1,Y2, · · · ,YN0 ]T , which have the dimensions M0 × 2 and
M0 × 1, respectively. Here M0 = ∑N0

i=1 ni is the total number
of measurements from all in-control wafers. Also, we denote
β ≡ [μ, σ 2, θ1, τ

2, θ2] as the entire set of parameters in theAGP
model. Given β, we note that YIC follows a multivariate normal
distribution based on the property of the Gaussian process, with
joint density function

f (YIC|β) = (2π)−M0/2(det�0)
−1/2

× exp
[
− (YIC − μ1M0 )

T�−1
0 (YIC − μ1M0 )

2

]
,

(5)

where 1p is a p × 1 vector with all ones, and �0 is theM0 × M0
covariance matrix of YIC. Based on the AGP model, the covari-
ance between elements of YIC takes the form

cov(yi j, yi′k) =⎧⎪⎨
⎪⎩
s(xi j, xi′k|θ1) + v(xi j, xi′k|θ2), ∀i = i′

i, i′ = 1, 2, · · · ,N0,

s(xi j, xi′k|θ1), ∀i �= i′
(6)

because the deviation εi(x) is assumed to be independent from
ε j(x), j �= i, andwithin onewafer εi(xi j) and εi(xik) are spatially
correlated. Because of this special structure,�0 is in fact the sum
of two covariance matrices, as illustrated in Fig. 5.

Given the in-control measurements YIC, we can compute the
distribution of themeasurements at any location on a newwafer
if the process is still in control. In particular, the measurements

Yl at location Xl on a new wafer follow a jointly normal distri-
bution with YIC:[

Yl
YIC

]
∼ N

([
μ1nl
μ1M0

]
,

[
�l �l,0
�T

l,0 �0

])
, (7)

where �l,0 is the nl × M0 covariance matrix between Yl and
YIC. Since εl (x) is independent from previous deviations, the
elements of �l,0 are simply s(xl j, xik|θ1),∀ j = 1, · · · , nl, i =
1, · · · ,N0, k = 1, · · · , ni. Similarly, �l is the nl × nl covariance
matrix ofYl with elements s(xl j, xlk|θ1) + v(xl j, xlk|θ2),∀ j, k =
1, 2, · · · , nl . Following Equation (7), the conditional distribu-
tion of Yl given YIC still follows a multivariate normal distribu-
tion with mean vector and covariance matrix

μ̃l = μ1nl + �l,0�
−1
0 (YIC − μ1M0 ),

�̃l = �l − �l,0�
−1
0 �T

l,0. (8)

In other words, when the process is in control, we expect Yl to
follow the normal distribution with mean μ̃l and variance �̃l .
We can use this information to develop monitoring statistics to
detect changes in the process.

If β is unknown, it can be substituted by the estimated value
β̂, which can be obtained by maximizing the log-likelihood
function (up to a constant) of the in-control samples:

β̂ = argmax
β

{
−1
2
log(det�0)

− 1
2
(YIC − μ1M0 )

T�−1
0 (YIC − μ1M0 )

}
. (9)

In the case of two-dimensional location data, β has seven
dimensions, and direct optimization of β might be difficult.
In Appendix A, we propose the maximum profile likelihood
method that reduces the dimension of β and has better numer-
ical stability.

Remark 1. For general Gaussian process regression, the inverse
of the covariancematrix can become numerically unstable when
the sample size n is large. In addition, the computational com-
plexity is of the order of O(n3), which significantly increases as
n increases. These problems are well recognized in the litera-
ture. On the other hand, because of the many nice properties
of the Gaussian process, there have been significant develop-
ments on the large-scale computation of the Gaussian processes
(Cressie and Johannesson, 2008; Haaland and Qian, 2011; Ran-
jan et al., 2011). These improvements have extended its applica-
tion to very large datasets. However, in our application, we do
not require a large data set to construct the AGPmodel. Also, as
shown in Fig. 5, our covariance matrix contains block diagonal
components. This structural advantage can also help to improve
the numerical stability. Moreover, given the in-control sample
data, our AGP model estimation the most expensive computa-
tions, such as inverting �0, only need to be performed once. All
subsequent predictions only involve matrix multiplication. This
further improves the computational stability.

Remark 2. It is also interesting to note that our AGP model
is indeed different from the CGP model proposed by Ba and
Joseph (2012), although they look similar to each other. The
CGPmodel is mainly focused on tackling non-stationary simu-
lation output. The authors use two Gaussian process covariance
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Figure . Structure of�0 . The grey areas are the non-zero matrix blocks with corresponding dimensions indicated in the middle.

structures, one to model global correlation and one to model
local correlation. Even though the resulting Gaussian process
is still stationary, it performs much better in modeling hetero-
geneous simulation output compared with a single covariance
structure. In fact, similar ideas were used in Haaland and Qian
(2011), where even more layers of covariance structures were
used to improve the accuracy. However, bothmodels are used to
approximate a single realization of a Gaussian process. In con-
trast, our model was motivated by a radically different setup. In
our model, each surface corresponds to a different realization of
the underlying Gaussian Process. As a result, the first compo-
nent of the Gaussian Process is used to characterize the shared
mean surface, whereas the second component of the Gaussian
Process reflects the characteristics of the deviation surface. Dif-
ferent from the CGP model, which accepts measurements from
one surface (realization) as input and finds covariance functions
for global and local correlations, theAGPmodel needsmeasure-
ments frommultiple surfaces (realizations). It then estimates the
common mean function and the distribution of the deviations
from the mean. In summary, our AGP model is different from
the CGP model in both motivation and mathematical details.

3. Statistical monitoring of geometric quality

The AGPmodel provides a quantification of the geometric pro-
files when the process is in control. Based on the model predic-
tions, we can further setup control charts tomonitor the geomet-
ric quality. In this article, we only consider simple Shewhart-type
control charts. In other words, each new wafer is tested inde-
pendently without information aggregation as in the Cumula-
tive Sum (CUSUM) chart or Exponentially Weighted Moving
Average (EWMA) chart. As a result, studying the Average Run
Length (ARL) of the charts is equivalent to studying the α, β

errors of the statistical testing procedure.

3.1. T2 test

As previously mentioned, conditioned on the historical in-
control measurements YIC, the measurements on a new wafer
follow amultivariate normal distribution if the process is in con-
trol. A natural choice to test whether or notYl conformswith the

predicted distribution can be stated as

H0 : Yl ∼ N(μ̃l, �̃l ) H1 : Yl �∼ N(μ̃l, �̃l ).

A commonly used test statistic is the T2 statistic: T 2
l = (Yl −

μ̃l )
T �̃

−1
l (Yl − μ̃l ), which follows χ2

nl when H0 is true (the pro-
cess is in control). When T 2

l is larger than the control limit HT,
we can rejectH0 (the process is out of control). The control limit
can be determined such that the α error of the T2 test meets a
specified value ARL0.

When the number of measurements taken from each wafer
are different, the distribution of T 2

l also varies according to nl.
In this case, we can use the p-value of the T2 statistic as themon-
itoring statistic pl = 1 − Fχ2 (T 2

l |ν), whereFχ2 (·|ν) denotes the
Cumulative Distribution Function (CDF) of the χ2

ν distribution
with ν degrees of freedom.When pl is smaller than a given limit
Hp, we can declare that the process is out of control.

Remark 3. In this article, we focus on Phase II analysis; i.e., we
assume the parameters of the AGP model are known or have
already been accurately estimated. In this case, the test statistics
have an exact χ2 distribution. Unfortunately, when the param-
eters of the model are unknown and need to be estimated from
limited samples, the test statistics do not have known distribu-
tions. This issue is beyond the scope of this article, and we will
investigate it in our future work.

3.2. GLR test

Despite the simplicity of the T2 test, it is designed to detect
omnibus changes. However, in our application, when changes
are detected, we may want to further analyze the root causes of
these changes. Therefore, the specific change types are expected
to be known. Based on engineering knowledge, there are three
typical change scenarios in surface fabrication: mean shift, vari-
ance change, and roughness change. Figure 6 demonstrates these
change scenarios using one-dimensional curves as an example.
Under this circumstance, a proposedGLR test that is able to pro-
vide change type information can be applied.

In this section, we illustrate the procedure using one example
involving multiple types of changes. In more detail, we assume
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that when the process is out of control, another geometric devi-
ation is added to the model (1), leading to

yl j = f (xl j) + εl (xl j) + ξl (xl j), ∀ j = 1, 2, · · · , nl, (10)

where ξl (x) denotes the additional geometric deviation due
to the out-of-control manufacturing process. Again, without
prior knowledge on the forms of the deviation, we assume
that it is an independent realization of another Gaussian pro-
cess with mean δ and covariance function w(xl j, xlk|θl ) =
γ 2 exp[−(xl j − xlk)T × diag(θl ) × (xl j − xlk)], the structure of
which is consistent with Equations (3) and (4). More important,
each parameter of this new Gaussian process component corre-
sponds to different scenarios in Fig. 6. For example, the mean
shifts lead to a non-zero δ; increased variance leads to larger γ 2,
etc. For notational simplicity, we use �w that depends on θl, γ

2

to represent the covariancematrix of ξl (x) evaluated at locations
Xl .

According to this assumption, to test whether or not the
wafer is in conformance is equivalent to testing whether or not
the deviation ξl (x) is significantly different from zero. In other
words, the hypothesis can be stated as

H0 : Yl ∼ N(μ̃l, �̃l ), H1 : Yl ∼ N(μ̃l + δ1nl , �̃l + �w)

for some non-zeroδ, γ 2, θl .

Consequently, the GLR statistic in this context can be expressed
as

Rl = 2 ln
supδ,γ 2,θl

det(�̃l + �w)−1/2 exp
[ − (Yl − μ̃l − δ1nl )T (�̃l + �w)−1(Yl − μ̃l − δ1nl )/2

]
det(�̃l )−1/2 exp

[ − (Yl − μ̃l )
T �̃

−1
l (Yl − μ̃l )/2

] . (11)

To find the distribution of Rl when H0 is true (process is in
control), we can reformulate the hypothesis as

H0 : δ = 0, γ 2 = 0 H1 : δ �= 0, or γ 2 > 0.

It is noted that when γ 2 = 0, θl is meaningless and does not
need to appear in H0. In other words, we only require the non-
negative θl in bothH0 andH1. Since the condition that γ 2 = 0 in
H0 is on the boundary of the parameter space, Rl approximately
follows a 50{: 50% mixture of χ2

1 and χ2
2 distribution when nl

is large according to Self and Liang (1987). In other words, the
CDF of Rl can be expressed as

P(Rl ≤ t ) = 0.5 × Fχ2 (t|1) + 0.5 × Fχ2 (t|2).

It is noted that the distribution of Rl does not depend on nl or
Xl . Therefore, the same control limit can be used regardless of
the number or locations of the measurements. When Rl is larger
than the control limitHR, we can rejectH0 (the process is out of
control).

Remark 4. When an out-of-control signal is received, parame-
ters (δ, γ 2, θl ) in statistic Rl can be used to diagnose the specific
type of change. The GLR test generally performs well when the
changes from H0 are sufficiently characterized by the alterna-
tive hypothesis. However, when the changes are different from
the types stated in the alternative hypothesis, the performance
of the GLR test might not be satisfactory. The statistic (11) is
only one possible choice of the GLR statistic and is designed to
characterize shifts occuring globally on the surface. If the pro-
cess engineers have relevant knowledge on the shift patterns and
regions, a more specific alternative hypothesis could be used in
Equation (10), and the GLR method can still be applied based
on the new hypothesis.

Remark 5. Generally speaking, the T2 test does not require
prior knowledge on the possible shift patterns. It is suitable
when knowledge on shift patterns is limited. On the other hand,
the GLR test is developed to detect specific types of change
determined through the alternative hypothesis. A specifically
designedGLR test is expected to bemore powerful than aT2 test

toward certain types of changes. Unfortunately, the increase in
its detection power comes at a price: it is not robust against other
types of changes. As a result, which test to use largely depends
on the practical problems and available information.

4. Simulation studies

In this section, we present some simulation studies to demon-
strate the effectiveness of our proposed method. We first illus-
trate that the AGP model is indeed effective in approximating
complex profiles, and the estimation procedure is numerically

Figure . Three typical change scenarios when a process is out of control: (a) mean shift; (b) variance change; and (c) roughness change.
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Figure . Predicted means and covariances using AGP and NGP models: (a) exact and predicted means; (b) exact covariance; (c) predicted covariance using AGP; and (d)
predicted covariance using NGP.

stable. Then we further analyze the performance of the statis-
tical monitoring schemes based on the AGP model. For eas-
ier illustration, we use a one-dimensional curve instead of a
two-dimensional geometric profile in the demonstrations in this
section.

4.1. Approximation by the AGP and its estimation
performance

Wefirst demonstrate that the AGPmodel is sufficient to approx-
imate the complex standard profile and quantify the in-control
variations from a group of samples with spatially correlated
errors. In the simulation, we use a one-dimensional function
(Shpak, 1995)

y = sin(x) + sin(10x/3) + ln(x) − 0.84x + 3,
2.5 ≤ x ≤ 7.5 (12)

as the standard curve. The spatially correlated error ϵ(x) was
generated from a Gaussian process with mean η = 0, τ 2 = 0.05,
and θ2 = 5 in its covariance function (4). We generated N0 =
10 in-control curves, with ni = 10 measurements taken from
each curve. The measurement locations were randomly selected

Table . Bias and RMSE of the MLE of the AGP model.

(N, n) μ =  σ  = . θ  =  τ  = . θ  = 

(,) Bias −0.0043 −0.0189 . −0.0002 .
RMSE . . . . .

(,) Bias −0.0013 −0.0189 . . .
RMSE . . . . .

(,) Bias . −0.0103 . . .
RMSE . . . . .

(,) Bias . −0.0169 . . .
RMSE . . . . .

according to a Latin Hypercube Sampling (LHS) strategy. We
used the maximum profile likelihood method to estimate the
parameter β̂ for the AGP model and then predict y at different
locations.

As a comparison, we use a Gaussian process with noisy
observations (Rasmussen and Williams, 2006), which we call
the Noisy Gaussian Process (NGP) model in this article. The
NGP model assumes yi j = f (xi j) + ε, i = 1, 2, · · · ,N0; j =
1, 2, · · · , ni to fit the data. More specifically, it still uses a Gaus-
sian process to approximate the standard profile f (xi j) but it
simply uses an i.i.d. noise to model the deviations between indi-
vidual samples and the standard profile. Figure 7 compares the
predicted means and covariances at different locations using
both AGP and NGP models.

It is shown in Fig. 7(a) that the difference between the mean
predictions from AGP and NGP is not significant. Both predic-
tions are very close to the exact function. More quantitatively,
the mean prediction from the AGP model has an Integrated
Mean Squared Error (IMSE) of 0.0052, whereas the IMSE of
NGP is 0.0077. However, when predicting covariance, Fig. 7(d)
clearly shows that the NGP model failed to predict the correct
structure. This is simply because our simulation model includes
a correlated noise, whereas the NGP model with an i.i.d. noise
assumption will no longer closely fit the simulated data. In con-
trast, covariance prediction fromAGP (Fig. 7(c)) is much closer
to the exact case (Fig. 7(b)). This comparison demonstrates that
although the NGP is equally effective in mean prediction, our
AGP model is overall more appropriate to model complex pro-
files with spatially correlated deviations.

We also conducted extensive simulations to show that the
estimation procedure of the AGPmodel is accurate and numer-
ically stable. In each simulation replication, we generated N0
curves from an AGP model with parameters β ≡ [μ = 1,
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Figure . Comparisons of β error in detecting different types and magnitudes of shifts.

σ 2 = 0.2, θ1 = 3, τ 2 = 0.05, θ2 = 10]. n0 measurements were
taken from each curve based on the LHS strategy. From these
data, the AGP parameters were estimated using the profileMax-
imumLikelihood Estimator (MLE) as presented in Appendix A.
We repeated this procedure forK= 1000 times for different pairs
of (N0, n0) and calculated the bias and RootMean Squared Error
(RMSE) of each component inside β̂. Using μ as an example:

Bias(μ̂) = 1
K

K∑
i=1

(μ̂i − μ),

RMSE(μ̂) =
√√√√ 1

K

K∑
i=1

(μ̂i − μ)2,

where i is the replication index. Calculations for the other com-
ponents followed the same manner. The numerical results are
summarized in Table 1.

It clearly shows that increasing the sample size, either larger
N0 or larger n0, can generally reduce the bias andRMSE. In addi-
tion, for the same sample sizeN0 × n0, it ismore helpful in terms
of estimation to have a larger n0 rather than a larger N0. Table 1

also reveals that the parameters of the second Gaussian process
component aremuch easier to estimate than that of the first one.
In addition, it is expected that a more sophisticated selection
method of themeasurement locations could further improve the
estimation performance.

4.2. Performance of statistical monitoring schemes

... Known in-control parameters β

In this section, we further investigate the performance of
the statistical monitoring schemes proposed in Section 3. We
start by studying the charting performance when the stan-
dard function f(x) and parameters of ϵ(x) are known exactly.
In this case, when the process is in control, the measure-
ments Yl at locations Xl follow normal distribution with
mean fl ≡ [ f (xl1), f (xl2), · · · , f (xlnl )]T and covariancematrix
�l = [v(xli, xl j|θ2)]nl×nl . It is noted that since f(x) is exactly
known, the first Gaussian process component in the AGP
model is not needed, and �l is obtained using a single covari-
ance function. Consequently, the T2 statistic becomes TE2

l =
(Yl − fl )T�−1

l (Yl − fl ). Similarly, the GLR statistic can be

Figure . Comparison of detection performance when using a different number of measurements on each wafer.
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simplified as

REl = 2 ln
supδ,γ 2,θl

det(�l + �w)−1/2 exp
[−(Yl − fl − δ1nl )T (�l + �w)−1(Yl − fl − δ1nl )/2

]
det(�l )−1/2 exp

[−(Yl − fl )T�−1
l (Yl − fl )/2

] .

For comparison, we also consider another simple method
called the Max-Min statistic, which is currently used in the
semiconductor industry to monitor the thickness profile of a
wafer. The Max-Min statistic calculates the difference between
the largest and smallestmeasurements among allmeasured loca-
tions on each wafer. When the difference exceeds a certain limit
HM, the process is considered to be out of control.

In this simulation, we used the same standard curve (12) and
noise process as in Section 4.1. For each wafer to be tested, we
randomly selected 20 locations to measure based on the LHS
strategy. The control limits of the T2 test and the GLR test can
be analytically obtained from the χ2

20 distribution and the 50{:
50% mixture of χ2

1 and χ2
2 distribution, respectively. However,

the control limit of the Max-Min statistic can only be obtained
through simulation. In the simulation, we chose the control lim-
its such that the alpha error α = 0.01, and the corresponding
control limits were HT = 37.57,HR = 8.27, andHM = 5.39.

Using these control limits, we compared the performance of
the three tests in detecting different types of changes, including
mean shifts, variance shifts, and correlation shifts. This trans-
lates to the changes in η, τ 2, θ2 from the values listed in Section
4.1. In each change scenario, we estimated the β error of the tests
using 20 000 simulation replications. The Operation Character-
istic (OC) curves of different types of shifts are shown in Fig. 8.

It shows that both the T2 test and GLR test can effectively
detect all three types of changes. However, the Max-Min test is
not able to detect mean shifts or correlation shifts because the
difference between the largest and smallest measurement values
remains the same (in distribution) when η or θ2 changes. The
Max-Min method also has a much larger β error in detecting
variance shifts. Furthermore, GLR test is much more sensitive
than the T2 test in detecting the mean shift. However, it is not
as good as the T2 test in detecting variance shifts in spite of the
small difference. When detecting correlation shifts, the GLRtest
can detect both increasing and decreasing θ2, whereas the T2

test is only able to detect increasing θ2, which corresponds
to an increased roughness of the geometric profile. On the
other hand, the T2test performs much better than the GLR
test in detecting large shifts of θ2. This is mainly due to
the fact that when θ2 changes, the scenario is different from
the alternative hypothesis (10) stated in the GLR test. As a
result, the general-purpose GLR test is not very effective. How-
ever, if we are interested in faster detection of the correlation
shifts, we can improve the GLR test by changing the alterna-
tive hypothesis. As we remarked in Section 3.2, in general the
T2 test is easy to implement and capable of detecting multi-
ple types of changes without assumptions on the change sce-
nario, whereas the GLR test is more complex yet flexible enough
to be able to cater for different detection requirements and
able to provide additional information on change type. Over-
all both the T2 and GLR tests have their own advantages. We
recommend that users choose between them based on practical
considerations.

It is also interesting to note that the β error of the GLR
test cannot decrease to zero even for a large magnitude of θ2
shift. This might be explained by the Nyquist–Shannon sam-
pling theorem (Shannon, 1949). Recall that the GLR test needs
to estimate the shifted parameters from the data. Thus, with a
finite sample size (20 in the simulation), it is unable to estimate
large θ2 values that correspond to high frequency changes in
the observations. To confirm this, we chose different numbers of
measurements (nl = 10, 20, and 30) on each wafer and adjusted
the control limits such that their α errors were equal. The
performance of these tests when different nl is used is compared
in Fig. 9.

It clearly indicates that a larger nl leads to a better per-
formance in detecting correlation shifts for both the T2 test
and the GLR test. Their performance in detecting variance
shifts is also improved with a larger nl, although the improve-
ment is relatively small. As a result, if the correlation changes

Table . Average and standard error (in parentheses) of the real α error of GLR and T tests with nominal α = ., ..

α = . α = .

(N, n) nl GLR T GLR T

(, )  . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )

(, )  . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )

(, )  . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )

(, )  . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )
 . (.) . (.) . (. ) . (. )
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Figure . β errors of the T and GLR tests when different models are used, with N = , n = , nl = . Comparisons with different sample sizes are included in the
online supplementary material.

(roughness changes) are of major interest, it is better to take
more measurements from each wafer to conduct the statistical
tests.

... Unknown in-control parameters
The simulation studies in Section 4.2.1 compared the testing
performance in the ideal case in which both f(x) and the process
parameters of ϵ(x) are known exactly. In practice, this informa-
tion is typically unknown, and we need to use the AGP model
and corresponding tests developed in Section 2.3 and Section 3.
As we would expect, with less information the performance is
not as good as the case in Section 4.2.1.

When the AGP model parameters β are known and predic-
tions are correct, the T2 test statistic exactly follows the χ2

nl dis-
tribution, whereas the GLR test statistic (11) asymptotically fol-
lows the mixture χ2

1 and χ2
2 distribution when nl is large. How-

ever, when the parameters are estimated from historical data,
these results are no longer valid. Simply using the critical values
derived from the theoretical distributions can lead to different α
errors from those designed (Jensen et al., 2006). To investigate
the impact of parameter estimation and model approximation
on the real α error, we designed the following simulation study.

In this simulation, we chose different combinations of in-
control samples (N0, n0). We also considered different numbers
of testing samples nl = 10, 20, and 30. In each replication, the
in-control data were generated based on the specific setting, and

Figure . OC curves using different in-control sample sizes for the AGP model. The number of testing samples nl = .
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Figure . Examples of wafer thickness predictions using a single Gaussian process model: (a) wafer no.  and (b) wafer no. .

the parameters of the AGPmodel were estimated from the data.
When the critical values were determined based on the theoreti-
cal distributions with nominal error α0, we were able to estimate
the real α error using 20 000 testing replications. This procedure
was repeated 200 times, and the mean and standard error of the
real α error are reported in Table 2.

The table reveals that more in-control samples or larger
M0 =N0 × n0 can indeed lead to a smaller discrepancy between
the realα error and the nominalα error. In particular, a largerN0
rather than larger n0 is more effective in reducing the difference.
Also, it appears that nl has a negative effect on the accuracy of the
α error, especially when nl > n0. If a smaller α0 is required, more
in-control samples are needed to compensate for the effects of
the estimated parameters.

When comparing their performance in detecting different
types of shifts, we adjusted the control limits such that all of
the tests had the same real α error of 0.01. Both the T2 test
and GLR test were constructed from each of the three cases:
Exact, AGP, and NGP. Here Exact refers to the case when all the
in-control parameters are known as in Section 4.2.1. The OC

Figure . Predicted standard thickness profile using the AGP model.

curves of these tests in detecting different shifts are shown in
Fig. 10.

It shows that the differences between the AGPmodel and the
exact scenario are small in most cases. In contrast, tests based
on the NGP model are generally worse than those based on the
AGPmodel except for the mean shifts scenario. As compared in
Section 4.1, the NGP model is as effective as the AGP model in
prediction of the mean. Therefore, their GLR test performances
in the mean-shift scenarios do not differ too much. However, as
we can observe from the figure, the T2 test using the NGPmodel
seems to be better than that using the AGP model and even
Exact case. This is because the NGPmodel does not account for
spatial correlation between samples. As a result, the T2 statis-
tic is more sensitive when the mean changes in one direction.
A similar phenomenon in the context of time series data moni-
toring has been reported in Zhang (1998). He found that when
the time series are correlated, directly monitoring the samples
(without accounting for the correlation) has a better perfor-
mance in detecting mean shifts than monitoring the residuals
(uncorrelatedwhen the time seriesmodel is correct). In practice,
however, it is impractical to adjust control limits becausewe can-
not use simulation to evaluate the real α error. When using the
limits based on nominalα errors, the realα error can be far away
from the nominal values. Similar findings have been reported
in the literature (Neuhardt, 1987; Montgomery et al., 1991). In
summary, the presented results confirm that the AGP model is
more suitable for approximating complex profiles with spatially
correlated errors. Consequently, charts based on AGP models
generally have a better performance in monitoring a variety of
shifts.

Similar to the influence on α error when the in-control
parameters are unknown, the number of in-control sam-
ples N0, n0 also has an impact on the detection perfor-
mance. Using the same pairs of (N0, n0), we compare the OC
curves of the tests constructed based on the AGP model in
Fig. 11.

Again, it shows that a larger in-control sample size generally
leads to a faster detection of different shifts. The improvement
is especially evident in detecting variance and correlation shifts.
In contrast, only a marginal improvement can be observed in
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Figure . The p-values of the T test and GLR test on the remaining  wafers.

detecting mean shifts. Together with earlier findings in this sec-
tion, we can conclude that more in-control samples are benefi-
cial for the monitoring performance and result in a more accu-
rateα error and lowerβ error. In the case with limited in-control
samples, a self-starting strategy (Sullivan and Jones, 2002) can be
used to continuously improve the AGPmodel estimation during
the monitoring process.

5. Application to themonitoring of wafer
thickness profiles

In this section, we apply our proposed method to monitor the
thickness profile of a silicon wafer after the slicing process. The
data were collected from a real semiconductor fabrication plant
(with preprocessing to remove sensitive information). A total of
38 wafers were measured, among which 8 wafers were identified
as normal and used as in-control samples.

Although a perfectly flat wafer surface is desired, variations
in the manufacturing process often cause roughness in its thick-
ness profile. However, as long as the deviation from a flat sur-
face is acceptable, the surface can be considered as being in con-
trol. Figure 12 demonstrates heat maps of the Gaussian process–
predicted thickness profile of two different in-control wafers.
Each prediction used 480 measurements at different locations.
These two heat maps together with subsequent heat maps use
the same color scale as in Fig. 1. Figure 12 clearly indicates
that the wafer is not as flat as we expect and not very smooth
due to process variations. More important, the thickness pro-
files of the in-control samples are quite different, which makes
it a challenge to monitor the geometric quality using existing
methods.

To monitor the remaining wafers, we used the eight in-
control wafers to fit the AGP model. We collected 60 mea-
surements from each of the in-control samples using a space-
filling sampling strategy. These data were used to estimate

the parameters of the AGP model. The MLE values were
obtained as μ̂ = −0.0159, σ̂ 2 = 0.0043, θ̂1 = [1.29 × 10−4,

3.82 × 10−4], τ̂ 2 = 0.0022, θ̂2 = [0.0051, 0.0061]. Figure 13
shows the predicted standard thickness profile from the AGP
model. It is interesting to note that the standard profile is not a
simple flat surface. This is because the raw silicon ingot is highly
likely to undergo stress deformation during the slicing process,
which results in the slicing direction being non-perpendicular
to the axial direction of the ingot. Therefore, the thickness pro-
file of a sliced wafer turns out to have a specific geometric fea-
ture, whose common pattern can be depicted by the standard
profile. Despite the non-flatness, compared with Fig. 12 we can
observe that the standard profile is much smoother because the
process variation has been filtered out from the standard profile
in the AGP model. In addition, the deviations between each in-
control sample and the standard profile were obtained and used
to quantify the process variations. These eight deviation profiles
were numerically inspected. The results indicate that the spatial
patterns of these deviations are similar and consistent with the
assumptions of the AGP model. Please refer to the supplemen-
tary material for more details.

Based on the estimated AGP model, we can use the T2 test
and GLR test to determine whether or not the remaining 30
wafers are in conformance. From each wafer to be tested, 120
measurements were taken using the space-filling sampling strat-
egy. Both test statistics were calculated using the procedures dis-
cussed in Section 3. To compare the T2 test and the GLR test,
we converted the test statistics to p-values, and the results are
shown in Fig. 14. The test results indicate that most of the wafers
is conform to the standard with acceptable variations. However,
there are also a few wafers that fail both tests with α = 0.01.
In Fig. B1 in Appendix B, these thickness profiles are shown
in more detail, and they indeed display discrepancies from the
standard profile and other in-control wafers. These failed wafers
are either much thicker or thinner in particular regions and
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overall much rougher compared with in-control samples and
the standard profile. We notice that wafer no. 12 failed GLR
but passed T2. Analyzing the parameters of the GLR statistic we
found that it is the variance shift causing that wafer 12 to fail
the GLR test. As we can observe from Fig. B1(a), the thickness
profile in the northeast region fluctuates a lot, which increases
the overall variance. If the measurements happened to miss a
region or did not sufficiently investigate a region, this test might
not detect an abnormality on this wafer. This issue also raises
the importance of sampling strategy. It is expected that by adap-
tively selecting the measurement points based on existing sam-
pling information, the detection performance can be enhanced.
We also reported the performance of the charts based on the
NGP model in the supplementary material. Interested readers
can refer to it formore discussion. In short, since theNGPmodel
does not account for the spatial correlation of the data, and it is
infeasible to adjust the control limit in practice through simula-
tion, a significant number of false alarms are expected.

6. Conclusions and future directions

This article presented a systematic method to monitor the geo-
metric quality of a wafer.We proposed anAGPmodel to approx-
imate the unknown standard geometric profile and quantify the
spatially correlated deviations during an in-controlmanufactur-
ing process. Based on the AGPmodel, we developed two statisti-
cal tests, namely, the T2 test and GLR test to determine whether
or not newly produced wafer is conforming. Numerical simula-
tions and real case studies have demonstrated that the proposed
method is effective.

There are several topics worth further investigation. First of
all, as demonstrated in Section 4.2.2, estimating theAGPparam-
eters from the in-control samples often leads to an inaccurate α

error of the developed test. This problem is especially impor-
tant if the number of in-control samples is limited. Therefore,
adjusting the control limit to account for parameter uncertainty
may improve the accuracy of the test. Second, in this research all
of themeasurements are randomly sampled using a space-filling
strategy such as an LHS plan. However, a more sensible way is to
sequentially determine the measurement locations based on the
current AGPmodel and detection objective. This adaptive sam-
pling strategy is expected to improve the efficiency and effective-
ness of the tests. Finally, other types of monitoring schemes that
can aggregate information from multiple wafers can be investi-
gated to allow faster detection of changes.
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Appendixes

A. Maximumprofile likelihood of the AGPmodel

To estimate the parameters of the AGP model from in-control
measurements, we need tomaximize the likelihood function (9).
However, direct optimization is easily trapped in local optima.
The scales of each dimension are also generally quite different,
making the optimization more difficult. To improve the opti-
mization performance, we can reduce its dimension by maxi-
mizing the profile likelihood.

In more details, given θ1 and θ2, the two correlation matri-
ces are completely determined. The first correlation matrix is
denoted as S, with elements s(xi j, xi′k|θ1). Because of the inde-
pendence of εi(x) for different i, the second correlation matrix
is a block diagonal matrix V = diag(V1,V2, · · · ,VN0 ), where
Vi has v(xi j, xik|θ2) j, k = 1, · · · , ni in each entry. According
to the physics of the process and observed data, often σ 2 > τ 2

and θ2 > θ1, where the inequality between the two vectors is
interpreted using an element-wise comparison. This is because
the standard profile often has a larger variation but smoother
transitions compared with the deviation profile due to process
variations. Consequently, we can define τ 2 = ρ × σ 2, with
0 � ρ � 1.

Using these notations, the log-likelihood with respect to μ,
σ 2 and ρ can be expressed as

lr = −M0 ln σ − 1
2
ln det(S + ρV)

− (YIC − μ1M0 )
T (S + ρV)−1(YIC − μ1M0 )

2σ 2 . (A1)

Taking the partial derivative of lr and setting the gradient to zero
results in

μ = 1TM0
(S + ρV)−1YIC

1TM0
(S + ρV)−11M0

,

σ 2 = (YIC − μ1M0 )
T (S + ρV)−1(YIC − μ1M0 )

M0
, (A2)

σ 2Tr[(S + ρV)−1V] = Tr[(S + ρV)−1V(S + ρV)−1

× (YIC − μ1M0 )(YIC − μ1M0 )
T ],

where Tr(S) denotes the trace of the matrix S. The first two
expressions in Equation (A2) are self-explanatory, and the third
one can be transformed to

(YIC − μ1M0 )
T (S + ρV)−1V(S + ρV)−1(YIC − μ1M0 )

(YIC − μ1M0 )
T (S + ρV)−1(YIC − μ1M0 )

= Tr[(S + ρV)−1V]
M0

(A3)

by plugging in the expression for σ 2. When M0 is large, the
inverse of S + ρV may still take some time for each different
ρ. We can significantly shorten the computational time by not-
ing that S + ρV = V1/2(V−1/2SV−1/2 + ρIM0 )V1/2, where IM0

is the identity matrix of dimension M0 × M0, and V = V1/2 ×
V1/2. Taking the singular value decomposition V−1/2SV−1/2 =
P�PT , we have (S + ρV)−1 = V−1/2P(� + ρIM0 )

−1PTV−1/2.
As a result, ρ only appears in the diagonalmatrix (� + ρIM0 )

−1,
and all of the computationally intensive operations such as
Cholesky decomposition, singular value decomposition, and
most matrix multiplications only need to be calculated once for
different ρ.

Using this computationally efficient procedure, we can find
the solution to Equation (A3) in the interval [0, 1]. If no solu-
tion exists in this interval, one of the end points ρ = 0, 1 with
largest likelihood value will be selected. Denoting ρ̄ as the value
selected thatmaximizes lr, we can obtain μ̄, σ̄ 2 based on the first
two expressions in Equation (A2). Then the maximum profile
log-likelihood becomes (up to a constant)

l̄r(θ1, θ2) = −M0 ln σ̄ − 1
2
ln det(S + ρ̄V), (A4)

where all of the quantities depend on θ1, θ2 explicitly or implic-
itly. As a result, the MLE estimator can be found by

(θ̂1, θ̂2) = argmax
θ1,θ2

{
−M0 ln σ̄ − 1

2
ln det(S + ρ̄V)

}
. (A5)

This optimization problem is much easier because the variables
have similar scales, and the dimension is reduced. Thus, μ̂, σ̂ 2,
and ρ̂ can be calculated using Equation (A2) with θ̂1, θ̂2 plugged
in.
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B. Additional figures

Figure B. Thickness profiles of the wafers that failed the tests: (a) wafer no. ; (b) wafer no. ; (c) wafer no. ; (d) wafer no. ; (e) wafer no. ; and (f ) wafer no. .
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